2.1 Problems

Problem 1. Use the bisection method to find a solution accurate to within 10^{-5} of $e^{x}-x^{2}+3 x-2=0$ for $0 \leq x \leq 1$

Problem 2. Use the bisection method to find the intersections of $x^{2}-1$ and $e^{1-x^{2}}$ accurate to within 10^{-3}.
Problem 3. Determine a continuous function such that the bisection method fails to converge to a zero.

2.2 Problems

Problem 4. Approximately solve $f(x)=x^{3}-2 x+1=0$ using a fixed point algorithm by computing $p_{1}, p_{2}, p_{3}, p_{4}$ for each method:

1. $x=\frac{1}{2}\left(x^{3}+1\right) p_{0}=1 / 2$
2. $x=2 / x-1 / x^{2} p_{0}=1 / 2$
3. $x=\sqrt{2-1 / x}, p_{0}=1 / 2$
4. $x=-(1-2 x)^{1 / 3}, p_{0}=1 / 2$
which methods seem to be appropriate.
Problem 5. Use a fixed-point iteration method to find an approximation to (25) $)^{1 / 3}$ that is accurate to within 10^{-4}

Problem 6. Show that if $g \in C([a, b])$ and $g(x) \in[a, b]$ for $x \in[a, b]$ and g^{\prime} exists in ($\left.a, b\right)$ and a constant $k \in(0,1)$ exists with $g^{\prime}(x) \leq k$ for all $x \in(a, b)$, then it is not always true that for all $p_{0} \in[a, b]$ the sequence $p_{n}=g\left(p_{n-1}\right)$ converges to a fixed point of g. (hint $1-x^{2}$ on $[0,1]$)

