2.1 Problems

Problem 1. Use the bisection method to find a solution accurate to within 10^{-5} of $e^x - x^2 + 3x - 2 = 0$ for $0 \le x \le 1$

Problem 2. Use the bisection method to find the intersections of $x^2 - 1$ and e^{1-x^2} accurate to within 10^{-3} .

Problem 3. Determine a continuous function such that the bisection method fails to converge to a zero.

2.2 Problems

Problem 4. Approximately solve $f(x) = x^3 - 2x + 1 = 0$ using a fixed point algorithm by computing p_1, p_2, p_3, p_4 for each method:

1. $x = \frac{1}{2}(x^3 + 1) \ p_0 = 1/2$ 2. $x = 2/x - 1/x^2 \ p_0 = 1/2$ 3. $x = \sqrt{2 - 1/x}, \ p_0 = 1/2$ 4. $x = -(1 - 2x)^{1/3}, \ p_0 = 1/2$

which methods seem to be appropriate.

Problem 5. Use a fixed-point iteration method to find an approximation to $(25)^{1/3}$ that is accurate to within 10^{-4}

Problem 6. Show that if $g \in C([a, b])$ and $g(x) \in [a, b]$ for $x \in [a, b]$ and g' exists in (a, b) and a constant $k \in (0, 1)$ exists with $g'(x) \leq k$ for all $x \in (a, b)$, then it is not always true that for all $p_0 \in [a, b]$ the sequence $p_n = g(p_{n-1})$ converges to a fixed point of g. (hint $1 - x^2$ on [0, 1])